I2AM: a Semi-Automatic System for Data Interpretation in Petroleum Geology

نویسندگان

  • Denis Ferraretti
  • Giacomo Gamberoni
  • Evelina Lamma
چکیده

The natural complexities of petroleum reservoir systems continue to provide a challenge to geoscientists. In petroleum geology, exploration and production wells are often analysed using image logs and the use of all the available borehole data to completely characterize the reservoir potentials and performance is an important task. The development of reliable interpretation methods is of prime importance regarding the reservoir understanding and data integration is a crucial step in order to create useful description models and to reduce the amount of time necessary for each study. Artificial intelligence, data mining techniques and statistical methods are widely used in reservoir modelling, for instance in prediction of sedimentary facies. The aim of our work was to define and implement a suite of tools for interpretation of image logs and large datasets of subsurface data coming from geological exploration. This led to the development of IAM (Intelligent Image Analysis and Mapping), a semi-automatic system that exploits image processing algorithms and artificial intelligence techniques to analyse and classify borehole data. More in detail, the objectives of the IAM approach are: (1) to automatically extract rock properties information from all the different types of data recorded/measured in the wells, and visual features from image logs in particular; (2) to identify clusters along the wells that have similar characteristics; (3) to predict class distribution over new wells in the same area. The main benefits of this approach are the ability to manage and use a large amount of subsurface data simultaneously. Moreover, the automatic identification of similar portions of wells by hierarchical clustering saves a lot of time for the geologist (since he analyses only the previously identified clusters). The interpretation time reduces from days to hours and subjectivity errors are avoided. Moreover, chosen clusters are the input for supervised learning methods which learn a classification that can be applied to new wells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Interpretation of UltraCam Imagery by Combination of Support Vector Machine and Knowledge-based Systems

With the development of digital sensors, an increasing number of high-resolution images are available. Interpretation of these images is not possible manually, which necessitates seeking for practical, fast and automatic solutions to solve the environmental and location-based management problems. The land cover classification using high-resolution imagery is a difficult process because of the c...

متن کامل

Underground contour (UGC) mapping using potential field, well log and comparing with seismic interpretation in Lavarestan area

Coastal Fars gravimetry project in Fars province was carried out to find the buried salt domes and to determine characteristics of faults in this area. The Lavarestan structure was covered by 4203 gravimetry stations in a regular grid of 1000*250 m. Depth structural model of this anticline made in previous studies was based on geological evidences and structural geology measurements. In order t...

متن کامل

A New Approach towards Precise Planar Feature Characterization Using Image Analysis of FMI Image: Case Study of Gachsaran Oil Field Well No. 245, South West of Iran

Formation micro imager (FMI) can directly reflect changes of wall stratums and rock structures. Conventionally, FMI images mainly are analyzed with manual processing, which is extremely inefficient and incurs a heavy workload for experts. Iranian reservoirs are mainly carbonate reservoirs, in which the fractures have an important effect on permeability and petroleum production. In this paper, a...

متن کامل

AN-EUL method for automatic interpretation of potential field data in unexploded ordnances (UXO) detection

We have applied an automatic interpretation method of potential data called AN-EUL in unexploded ordnance (UXO) prospective which is indeed a combination of the analytic signal and the Euler deconvolution approaches. The method can be applied for both magnetic and gravity data as well for gradient surveys based upon the concept of the structural index (SI) of a potential anomaly which is relate...

متن کامل

Automatic estimation of regularization parameter by active constraint balancing method for 3D inversion of gravity data

Gravity data inversion is one of the important steps in the interpretation of practical gravity data. The inversion result can be obtained by minimization of the Tikhonov objective function. The determination of an optimal regularization parameter is highly important in the gravity data inversion. In this work, an attempt was made to use the active constrain balancing (ACB) method to select the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012